

 Navigation

 	
 index

 	
 next |

 	ADMesh 0.98.1 documentation

ADMesh - STL mesh manipulation tool

Contents

	Triangular mesh and the STL format

	ADMesh command line tool
	Examples

	Options

	Mesh Transformation and Manipulation Options

	Mesh Checking and Repairing Options

	ADMesh output

	The C library API

	Python bindings for ADMesh

Overview

ADMesh is a program for processing triangulated solid meshes. Currently,
ADMesh only reads the STL file format that is used for rapid prototyping
applications, although it can write STL, VRML, OFF, and DXF files.
Additional information regarding the underlying algorithms of ADMesh can be found in
Anthony Martin’s Masters Thesis [http://www.varlog.com/admesh-htm/ADMeshThesis.zip].

ADMesh is written in ANSI C, licensed under GPLv2+. This is documentation for version 0.98.1.

Features

	Read and write binary and ASCII STL files

	Check STL files for flaws (i.e. unconnected facets, bad normals)

	Repair facets by connecting nearby facets that are within a given tolerance

	Fill holes in the mesh by adding facets

	Repair normal directions (i.e. facets should be CCW)

	Repair normal values (i.e. should be perpendicular to facet with length=1)

	Remove degenerate facets (i.e. facets with 2 or more vertices equal)

	Translate in x, y, and z directions

	Rotate about the x, y, and z axes

	Mirror about the xy, yz, and xz planes

	Scale the part by a factor

	Merge 2 STL files into one

	Write an OFF file

	Write a VRML file

	Write a DXF file

	Calculate the volume of a part

	Get other statistics about the mesh

 Copyright 2015, ADMesh contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ADMesh 0.98.1 documentation

Triangular mesh and the STL format

FIXME

 Copyright 2015, ADMesh contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ADMesh 0.98.1 documentation

ADMesh command line tool

ADMesh command line tool is executed as follows:

admesh [OPTION]... file

By default, ADMesh performs all of the mesh checking and repairing options
on the input file. This means that is checks exact, nearby,
remove-unconnected, fill-holes, normal-directions, and normal-values. The
file type (ASCII or binary) is automatically detected. The input file is
not modified unless it is specified by the --write option. If the following
command line was used:

admesh sphere.stl

the file sphere.stl would be opened and read, it would be checked and fixed
if necessary, and the results of processing would be printed out. The
results would not be saved.

If any of the options --exact, --nearby, --remove-unconnected, --fill-holes,
--normal-directions, --reverse-all, --normal-values, or --no-check are
given, then no other checks besides that one will be done unless they are
specified or unless they are required by ADMesh before the specified check
can be done. For example the following invocation:

admesh --remove-unconnected sphere.stl

would first do an exact check because it is required, and then the
unconnected facets would be removed. The results would be printed and no
other checks would be done.

Examples

To perform all checks except for nearby, the following command line would be
used:

admesh --exact --remove-unconnected --fill-holes \
 --normal-directions --normal-values sphere.stl

Actually, since the --exact check is required by ADMesh before
--remove-unconnected, and --remove-unconnected is required before --fill-holes,
the above command line could be shortened as follows with the same results:

admesh --fill-holes --normal-directions --normal-values sphere.stl

And again the same results could be achieved using the short options:

admesh -fudev sphere.stl

or:

admesh -fdv sphere.stl

The following command lines do the same thing:

admesh sphere.stl
admesh -fundev sphere.stl
admesh -f -u -n -d -e -v sphere.stl

since the -fundev options are implied by default. To eliminate one of the
checks, just remove the letter of the check to eliminate from the “word”
fundev.

Options

ADMesh supports the following options, grouped by type.

Mesh Transformation and Manipulation Options

--x-rotate=angle Rotate CCW about x-axis by angle degrees
--y-rotate=angle Rotate CCW about y-axis by angle degrees
--z-rotate=angle Rotate CCW about z-axis by angle degrees
--xy-mirror Mirror about the xy plane
--yz-mirror Mirror about the yz plane
--xz-mirror Mirror about the xz plane
--scale=factor Scale the file by factor (multiply by factor)
--translate=x,y,z Translate the file to x, y, and z
--merge=name Merge file called name with input file

Mesh Checking and Repairing Options

-e, --exact Only check for perfectly matched edges
-n, --nearby Find and connect nearby facets. Correct bad facets
-t, --tolerance=tol Initial tolerance to use for nearby check = tol
-i, --iterations=i Number of iterations for nearby check = i
-m, --increment=inc Amount to increment tolerance after iteration=inc
-u, --remove-unconnected Remove facets that have 0 neighbors
-f, --fill-holes Add facets to fill holes
-d, --normal-directions Check and fix direction of normals (ie. CW, CCW)
 --reverse-all Reverse the directions of all facets and normals
-v, --normal-values Check and fix normal values
-c, --no-check Don't do any check on input file

The default value for tolerance is the length of the shortest edge of the
mesh. The default number of iterations is 2, and the default increment is
0.01% of the diameter of a sphere that encloses the entire mesh.

File Output Options

-b, --write-binary-stl=name Output a binary STL file called name
-a, --write-ascii-stl=name Output an ASCII STL file called name
 --write-off=name Output a Geomview OFF format file called name
 --write-dxf=name Output a DXF format file called name
 --write-vrml=name Output a VRML format file called name

The input file is not modified by ADMesh so the only way to preserve any
modifications that have been made to the input file is to use one of the
--write options.

If the user wants to modify (overwrite) the input file, then the input file
can also be specified for the --write option. For example, to convert an
input ASCII STL file called sphere.stl to a binary STL file, overwriting
the original file, and performing no checks, the following command line
would be used:

admesh --write-binary-stl=sphere.stl --no-check sphere.stl

Miscellaneous Options

--help Display the help and exit
--version Output version information and exit

Mesh Transformation and Manipulation Options

--x-rotate=angle
--y-rotate=angle
--z-rotate=angle

Rotate the entire mesh about the specified axis by the given number of
degrees. The rotation is counter-clockwise about the axis as seen by
looking along the positive axis towards the origin.

--xy-mirror
--yz-mirror
--xz-mirror

Mirror the mesh about the specified plane. Mirroring involves reversing
the sign of all of the coordinates in a particular axis. For example, to
mirror a mesh about the xy plane, the signs of all of the z coordinates
in the mesh are reversed.

--scale=factor

Scale the mesh by the given factor. This multiplies all of the
coordinates by the specified number. This option could be used to change
the “units” (there are no units explicitly specified in an STL file) of
the mesh. For example, to change a part from inches to millimeters, just
use the –scale=25.4 option.

--translate=x,y,z

Translate the mesh to the position x,y,z. This moves the minimum x, y,
and z values of the mesh to the specified position. For example, given a
mesh that has the following initial minimum and maximum coordinate values:

Min X = 4.000000, Max X = 5.000000
Min Y = 1.000000, Max Y = 3.000000
Min Z = -7.000000, Max Z = -2.000000

if the option --translate=1,2,3 is specified, the final values will be:

Min X = 1.000000, Max X = 2.000000
Min Y = 2.000000, Max Y = 4.000000
Min Z = 3.000000, Max Z = 8.000000

The translate option is often used to translate a mesh with arbitrary
minimum and maximum coordinates to 0,0,0. Usually, translation is also
required when merging two files.

merge=name

Merge the specified file with the input file. No translation is done, so
if, for example, a file was merged with itself, the resulting file would
end up with two meshes exactly the same, occupying exactly the same
space. So generally, translations need to be done to the files to be
merged so that when the two meshes are merged into one, the two resulting
parts are properly spaced. If you know the nature of the parts to be
merged, it is possible to “nest” one part inside the other. Note,
however, that no warnings will be given if one part intersects with the
other.

It is possible to place one part against another, with no space in
between, but you will still end up with two separately defined parts. If
such a mesh was made on a rapid-prototyping machine, the result would
depend on the nature of the machine. Machines that use a photopolymer
would produce a single solid part because the two parts would be “bonded”
during the build process. Machines that use a cutting process would
yield two or more parts.

A copy of a mesh can be made by using the --merge and --translate options
at the same time. For example, given a file called block.stl with the
following size:

Min X = 0.000000, Max X = 2.000000
Min Y = 0.000000, Max Y = 2.000000
Min Z = 0.000000, Max Z = 2.000000

to create a file called 2blocks.stl that contains two of the parts
separated by 1 unit in the x direction, the following command line would
be used:

admesh --translate=3,0,0 --merge=block.stl --write-binary=2blocks.stl block.stl

This would yield a binary STL file called 2blocks.stl with the following size:

Min X = 0.000000, Max X = 5.000000
Min Y = 0.000000, Max Y = 2.000000
Min Z = 0.000000, Max Z = 2.000000

Mesh Checking and Repairing Options

-e, --exact

Check each facet of the mesh for its 3 neighbors. Since each facet is a
triangle, there should be exactly 3 neighboring facets for every facet in
the mesh. Since the mesh defines a solid, there should be no unconnected
edges in the mesh. When this option is specified, the 3 neighbors of
every facet are searched for and, if found, the neighbors are added to an
internal list that keeps track of the neighbors of each facet. A facet
is only considered a neighbor if two of its vertices EXACTLY match two of
the vertices of another facet. That means that there must be 0
difference between the x, y, and z coordinates of the two vertices of the
first facet and the two vertices of the second facet.

Degenerate facets (facets with two or more vertices equal to each other)
are removed during the exact check. No other changes are made to the
mesh. An exact check is always done before any of the other checking and
repairing options even if --exact isn’t specified. There is one
exception to this rule; no exact check needs to be done before the
--normal-values option.

-n, --nearby
-t, --tolerance=tol
-i, --iterations=i
-m, --increment=inc

Checks each unconnected facet of the mesh for facets that are almost
connected but not quite. Due to round-off errors and other factors, it
is common for a mesh to have facets with neighbors that are very close
but don’t match exactly. Often, this difference is only in the 8th
decimal place of the vertices, but these facets will not show up as
neighbors during the exact check. This option finds these nearby
neighbors and it changes their vertices so that they match exactly. The
exact check is alway done before the nearby check, so only facets that
remain unconnected after the exact check are candidates for the nearby
check.

The --tolerance=tol option is used to specify the distance that is
searched for the neighboring facet. By default, this value is set
automatically by ADMesh to be the length of the shortest edge of the
mesh. This value is used because it makes it unlikely for a facet that
shouldn’t be a neighbor to be found and matched as a neighbor. If the
tolerance is too big, then some facets could end up connected that should
definitely not be connected. This could create a “mobius part” that is
not a valid solid. If this occurs, it can be seen by checking the value
of Backwards edges that is printed after processing. (The number of
backwards edges should be 0 for a valid solid.)

The --iterations=i and --increment=inc options are used together to
gradually connect nearby facets using progressively larger tolerances.
This helps to prevent incorrect connects but can also allow larger
tolerances to be used. The --iterations option gives the number of times
that facets are checked for nearby facets, each time using a larger
tolerance. The --increment=inc option gives the amount that the
tolerance is increased after each iteration. The number specified by
inc is added to the tolerance that was used in the previous iteration.
If all of the facets are connected, no further nearby checks will be
done.

-f, --fill-holes

Fill holes in the mesh by adding facets. This is done after the exact
check and after nearby check (if any nearby check is done). If there are
still unconnected facets, then facets will be added to the mesh,
connecting the unconnected facets, until all of the holes have been
filled. This is guaranteed to completely fix all unconnected
facets. However, the resulting mesh may or may not be what the user
expects.

-d, --normal-directions

Check and fix if necessary the directions of the facets. This only deals
with whether the vertices of all the facets are oriented clockwise or
counterclockwise, it doesn’t check or modify the value of the normal
vector. Every facet should have its vertices defined in a
counterclockwise order when looked at from the outside of the part. This
option will orient all of the vertices so that they are all facing in the
same direction. However, it it possible that this option will make all
of the facets facet inwards instead of outwards. The algorithm tries to
get a clue of which direction is inside and outside by checking the value
of the normal vector so the chance is very good that the resulting mesh
will be correct. However, it doesn’t explicitly check to find which
direction is inside and which is outside.

--reverse-all

Reverses the directions of all of the facets and normals. If the
--normal-directions option ended up making all of the facets facing
inwards instead of outwards, then this option can be used to reverse all
of the facets. It is up to the user to determine if the facets are
facing inwards and if they need reversing. This option also fixes and updates the
normal vector for each facet.

-v, --normal-values

Checks and fixes if necessary the normal vectors of every facet. The
normal vector will point outward for a counterclockwise facet. The
length of the normal vector will be 1.

-c, --no-check

Don’t do any checks or modifications to the input file. By default,
ADMesh performs all processes (exact, nearby, remove_unconnected,
fill-holes, normal-directions, and normals-values) on the input file. If
the --no-check option is specified, no checks or modifications will be
made on the input file. This could be used, for example, to translate an
ASCII STL file to a binary STL file, with no modifications made. A
command line such as the following might be used:

admesh --no-check --write-binary-stl=newblock.stl --translate=0,0,0 block.stl

This would open the file block.stl, would translate it to 0,0,0 no checks
would be performed and a binary STL file of the translated mesh would be
written to newblock.stl.

ADMesh output

After ADMesh has processed a mesh, it prints out a page of information about
that mesh. The output looks like the following:

================= Results produced by ADMesh version 0.98 =================
Input file : sphere.stl
File type : Binary STL file
Header : Processed by ADMesh version 0.98
============== Size ==============
Min X = -1.334557, Max X = 1.370952
Min Y = -1.377953, Max Y = 1.377230
Min Z = -1.373225, Max Z = 1.242838
========= Facet Status ========== Original ============ Final ====
Number of facets : 3656 3656
Facets with 1 disconnected edge : 18 0
Facets with 2 disconnected edges : 3 0
Facets with 3 disconnected edges : 0 0
Total disconnected facets : 21 0
=== Processing Statistics === ===== Other Statistics =====
Number of parts : 1 Volume : 10.889216
Degenerate facets : 0
Edges fixed : 24
Facets removed : 0
Facets added : 0
Facets reversed : 0
Backwards edges : 0
Normals fixed : 0

Description of Output

The following describes the output information line by line.

Input file : sphere.stl

The name of the file that was read.

File type : Binary STL file

The type of file. Currently, the only two possibilities are Binary STL
file and ASCII STL file. ADMesh automatically detect the type of input
file.

Header : Processed by ADMesh version 0.98

The first 80 characters of the STL file. The first 80 bytes of a binary
STL file or the first line of an ASCII STL file can contain some text.
Usually, the CAD system that has created that file, or the last program
to process that file puts its name in the header. ADMesh puts its own
string in the header when it saves the file.

============== Size ==============
Min X = -1.334557, Max X = 1.370952
Min Y = -1.377953, Max Y = 1.377230
Min Z = -1.373225, Max Z = 1.242838

This section gives the boundaries of the mesh. The mesh will fit just
inside a box of this size.

========= Facet Status ========== Original ============ Final ====
Number of facets : 3656 3656
Facets with 1 disconnected edge : 18 0
Facets with 2 disconnected edges : 3 0
Facets with 3 disconnected edges : 0 0
Total disconnected facets : 21 0

Information about the quality of the mesh before, and after processing by
ADMesh. The number of facets gives an idea about the complexity and
accuracy of the mesh. Disconnected facets will fall into 3 categories.
Some facets will have only one disconnected edge, some will have 2 edges
disconnected, and some will have all 3 edges disconnected. Of course,
for a valid solid mesh, there should be 0 disconnected facets.

=== Processing Statistics ===
Number of parts : 1

This is the total number of separate parts in the file. This can be a
very useful indication of whether your file is correct. Sometimes, the
user of the CAD system that creates the mesh just puts several pieces
together next to each other, and then outputs the mesh. This might not
cause any problems for a rapid prototyping system that uses a
photopolymer because all of the parts will be “glued” together anyway
during the build. However, a rapid prototyping machine that is based on
cutting will cut each one of the parts individually and the result will
be many parts that need to be glued together. The number of parts is
counted during --normal-directions, so if the --normal-directions check
is eliminated, then the number of parts will read 0.

Degenerate facets : 0

Number of degenerate facets in the input file. A degenerate facet is a
facet that has two or more vertices exactly the same. The resulting
facet is just a line (if two vertices are the same) or could even be a
point (if all 3 vertices are the same). These facets add no information
to the file and are removed by ADMesh during processing.

Edges fixed : 24

The total number of edges that were fixed by moving the vertices slightly
during the nearby check. This does not include facets that were added by
--fill-holes.

Facets removed : 0

The total number of facets removed. There are two cases where facets
might be removed. First, all degenerate facets in the input file are
removed. Second, if there are any completely unconnected facets (facets
with 3 disconnected edges) after the exact and nearby checks, then these
facets will be removed by --remove-unconnected.

Facets added : 0

Number of facets that have been added by ADMesh to the original mesh.
Facets are only added during --fill-holes. So this number represents the
number of facets that had to be added to fill all of the holes, if any,
in the original mesh.

Facets reversed : 0

The number of facets that were reversed during --normal-directions. This
only relates to the order of the vertices of the facet (CW or CCW), it
has nothing to do with the value of the normal vector.

Backwards edges : 0

The number of edges that are backwards. After ADMesh has finished all of
the checks and processing, it verifies the results. If the
normal-directions check has been done then the number of backwards edges
should be 0. If it is not, then a “mobius part” has been created which
is not a valid solid mesh. In this case the mesh can be processed again,
but a smaller tolerance on the nearby check should be used or no nearby
check should be done.

Normals fixed : 0

The number of normal vectors that have been fixed. During the
normal-values check, ADMesh calculates the value of every facet and
compares the result with the normal vector from the input file. If the
result is not within a fixed tolerance, then the normal is said to be
fixed. Actually, for consistency, every normal vector is rewritten with
the new calculated normal, even if the original normal was within
tolerance. However, the normals that were within tolerance are not
counted by normals fixed.

 Copyright 2015, ADMesh contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ADMesh 0.98.1 documentation

The C library API

Defines

	
STL_MAX(A, B)

	

	
STL_MIN(A, B)

	

	
ABS(X)

	

	
LABEL_SIZE

	

	
NUM_FACET_SIZE

	

	
HEADER_SIZE

	

	
STL_MIN_FILE_SIZE

	

	
ASCII_LINES_PER_FACET

	

	
SIZEOF_EDGE_SORT

	

	
SIZEOF_STL_FACET

	

Typedefs

	
typedef char stl_extra[2]

	

Enums

	
enum stl_type

	Type of STL file.

Values:

	
binary

	

	
ascii

	

	
inmemory

	

Functions

	
void stl_open(stl_file *stl, char *file)

	Open an STL file and load it’s contents.

	Warning

	As IO operation, this could result in an error, always check the error flag with stl_get_error() or use stl_exit_on_error() after using stl_open()

	Parameters

	
	stl - The struct to load the file data to

	file - Path to the STL file

	
void stl_close(stl_file *stl)

	Perform cleanup on stl_file.

This function frees memory, always use it, when you no longer needs the stl_file instance
	Parameters

	
	stl - What to close

	
void stl_stats_out(stl_file *stl, FILE *file, char *input_file)

	Print statistics in human readable form to some file.

	Parameters

	
	stl - Where to obtain the statisctics

	file - Where to print the statisctics to (can be stdout)

	input_file - What filename to use in the human readable output

	
void stl_print_edges(stl_file *stl, FILE *file)

	Print edges to some file.

	Warning

	This prints from edge_start array, that is never populated and thus this will never actually work

	Parameters

	
	stl - From what data

	file - Where to print the edges to (can be stdout)

	
void stl_print_neighbors(stl_file *stl, char *file)

	

	
void stl_put_little_int(FILE *fp, int value_in)

	

	
void stl_put_little_float(FILE *fp, float value_in)

	

	
void stl_write_ascii(stl_file *stl, const char *file, const char *label)

	

	
void stl_write_binary(stl_file *stl, const char *file, const char *label)

	

	
void stl_write_binary_block(stl_file *stl, FILE *fp)

	

	
void stl_check_facets_exact(stl_file *stl)

	

	
void stl_check_facets_nearby(stl_file *stl, float tolerance)

	

	
void stl_remove_unconnected_facets(stl_file *stl)

	

	
void stl_write_vertex(stl_file *stl, int facet, int vertex)

	

	
void stl_write_facet(stl_file *stl, char *label, int facet)

	

	
void stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge)

	

	
void stl_write_neighbor(stl_file *stl, int facet)

	

	
void stl_write_quad_object(stl_file *stl, char *file)

	

	
void stl_verify_neighbors(stl_file *stl)

	

	
void stl_fill_holes(stl_file *stl)

	

	
void stl_fix_normal_directions(stl_file *stl)

	

	
void stl_fix_normal_values(stl_file *stl)

	

	
void stl_reverse_all_facets(stl_file *stl)

	

	
void stl_translate(stl_file *stl, float x, float y, float z)

	

	
void stl_translate_relative(stl_file *stl, float x, float y, float z)

	

	
void stl_scale_versor(stl_file *stl, float versor)

	

	
void stl_scale(stl_file *stl, float factor)

	

	
void stl_rotate_x(stl_file *stl, float angle)

	

	
void stl_rotate_y(stl_file *stl, float angle)

	

	
void stl_rotate_z(stl_file *stl, float angle)

	

	
void stl_mirror_xy(stl_file *stl)

	

	
void stl_mirror_yz(stl_file *stl)

	

	
void stl_mirror_xz(stl_file *stl)

	

	
void stl_open_merge(stl_file *stl, char *file)

	

	
void stl_invalidate_shared_vertices(stl_file *stl)

	

	
void stl_generate_shared_vertices(stl_file *stl)

	

	
void stl_write_obj(stl_file *stl, char *file)

	

	
void stl_write_off(stl_file *stl, char *file)

	

	
void stl_write_dxf(stl_file *stl, char *file, char *label)

	

	
void stl_write_vrml(stl_file *stl, char *file)

	

	
void stl_calculate_normal(float normal, stl_facet *facet)

	

	
void stl_normalize_vector(float v)

	

	
void stl_calculate_volume(stl_file *stl)

	

	
void stl_repair(stl_file *stl, int fixall_flag, int exact_flag, int tolerance_flag, float tolerance, int increment_flag, float increment, int nearby_flag, int iterations, int remove_unconnected_flag, int fill_holes_flag, int normal_directions_flag, int normal_values_flag, int reverse_all_flag, int verbose_flag)

	

	
void stl_initialize(stl_file *stl)

	

	
void stl_count_facets(stl_file *stl, char *file)

	

	
void stl_allocate(stl_file *stl)

	

	
void stl_read(stl_file *stl, int first_facet, int first)

	

	
void stl_facet_stats(stl_file *stl, stl_facet facet, int first)

	

	
void stl_reallocate(stl_file *stl)

	

	
void stl_add_facet(stl_file *stl, stl_facet *new_facet)

	

	
void stl_get_size(stl_file *stl)

	

	
void stl_clear_error(stl_file *stl)

	

	
int stl_get_error(stl_file *stl)

	

	
void stl_exit_on_error(stl_file *stl)

	

	
struct stl_vertex

	#include <admesh/stl.h>Vertex of a facet, defined by 3D coordinates.

Public Members

	
float x

	

	
float y

	

	
float z

	

	
struct stl_normal

	#include <admesh/stl.h>Normal vector of a facet, defined by 3D coordinates.

Public Members

	
float x

	

	
float y

	

	
float z

	

	
struct stl_facet

	#include <admesh/stl.h>Facet, one triangle of the mesh.

Public Members

	
stl_normal normal

	normal vector

	
stl_vertex vertex[3]

	3 vertices

	
stl_extra extra

	extra data

	
struct stl_edge

	#include <admesh/stl.h>Edge between two vertices.

Public Members

	
stl_vertex p1

	start vertex

	
stl_vertex p2

	end vertex

	
int facet_number

	id of facet this edge belongs to

	
struct stl_hash_edge

	#include <admesh/stl.h>
Public Members

	
unsigned key[6]

	

	
int facet_number

	

	
int which_edge

	

	
struct stl_hash_edge *next

	

	
struct stl_neighbors

	#include <admesh/stl.h>
Public Members

	
int neighbor[3]

	

	
char which_vertex_not[3]

	

	
struct v_indices_struct

	#include <admesh/stl.h>
Public Members

	
int vertex[3]

	

	
struct stl_stats

	#include <admesh/stl.h>Statistics about the STL mesh.

Some of them are populated on stl_open() and after some operations, others, such as volume, have to be calculated by appropriate functions.

Public Members

	
char header[81]

	header of the STL file

	
stl_type type

	type of the STL file

	
int number_of_facets

	total number of facets

	
stl_vertex max

	maximal dimensions of the mesh

	
stl_vertex min

	minimal dimensions of the mesh

	
stl_vertex size

	size of the bounding box

	
float bounding_diameter

	diameter of the bounding box

	
float shortest_edge

	length of the shortest edge

	
float volume

	volume of the mesh, has to be calculated by stl_calculate_volume()

	
unsigned number_of_blocks

	should be number of blocks, but is never set

	
int connected_edges

	how many edges have been connected by ADMesh

	
int connected_facets_1_edge

	how many facets are connected by at least 1 edge, get’s calculated during stl_check_facets_nearby()

	
int connected_facets_2_edge

	how many facets are connected by at least 2 edges, get’s calculated during stl_check_facets_nearby()

	
int connected_facets_3_edge

	how many facets are connected by all 3 edges, get’s calculated during stl_check_facets_nearby()

	
int facets_w_1_bad_edge

	how many facets have exactly 1 unconnected edge, get’s calculated during stl_repair()

	
int facets_w_2_bad_edge

	how many facets have exactly 2 unconnected edges, get’s calculated during stl_repair()

	
int facets_w_3_bad_edge

	how many facets have exactly 3 unconnected edges, get’s calculated during stl_repair()

	
int original_num_facets

	original number of facets when the file was loaded

	
int edges_fixed

	how many edges were fixed by ADMesh

	
int degenerate_facets

	number of removed degenerate facets

	
int facets_removed

	number of removed degenerate facets

	
int facets_added

	number of facets removed by stl_remove_unconnected_facets()

	
int facets_reversed

	number of facets reversed by stl_fix_normal_directions()

	
int backwards_edges

	number of edges that are backwards counted during stl_verify_neighbors()

	
int normals_fixed

	number of normals fixed during stl_fix_normal_values()

	
int number_of_parts

	number of parts (distinguished shells), calculated during stl_fix_normal_directions()

	
int malloced

	how many edges have been malloced during stl_check_facets_nearby()

	
int freed

	how many edges have been freed during stl_check_facets_nearby()

	
int facets_malloced

	how many facets have been malloced

	
int collisions

	internal collision counter for stl_check_facets_nearby()

	
int shared_vertices

	number of shared vertices, populated by stl_generate_shared_vertices()

	
int shared_malloced

	how many shared vertices have been malloced by stl_generate_shared_vertices()

	
struct stl_file

	#include <admesh/stl.h>STL file.

The main structure representing the mesh. All functions take reference to this as a first argument.

Public Members

	
FILE *fp

	pointer to associated file

	
stl_facet *facet_start

	array of facets

	
stl_edge *edge_start

	array of edges (never populated)

	
stl_hash_edge **heads

	head of linked list of edges, used internally by some repairs

	
stl_hash_edge *tail

	tail of linked list of edges, used internally by some repairs

	
int M

	magic variable, used internally by some repairs

	
stl_neighbors *neighbors_start

	array of neighbors populated by various repairs

	
v_indices_struct *v_indices

	internal array used by stl_generate_shared_vertices()

	
stl_vertex *v_shared

	vertices array used by stl_generate_shared_vertices()

	
stl_stats stats

	statistics about the mesh

	
char error

	error flag, when something went wrong, this is not 0

 Copyright 2015, ADMesh contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	ADMesh 0.98.1 documentation

Python bindings for ADMesh

FIXME

 Copyright 2015, ADMesh contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ADMesh 0.98.1 documentation

Index

 A
 | B
 | H
 | I
 | L
 | N
 | S
 | V

A

 	

 	ABS (C macro)

 	ascii (C++ class)

 	

 	ASCII_LINES_PER_FACET (C macro)

B

 	

 	binary (C++ class)

H

 	

 	HEADER_SIZE (C macro)

I

 	

 	inmemory (C++ class)

L

 	

 	LABEL_SIZE (C macro)

N

 	

 	NUM_FACET_SIZE (C macro)

S

 	

 	SIZEOF_EDGE_SORT (C macro)

 	SIZEOF_STL_FACET (C macro)

 	stl_add_facet (C++ function)

 	stl_allocate (C++ function)

 	stl_calculate_normal (C++ function)

 	stl_calculate_volume (C++ function)

 	stl_check_facets_exact (C++ function)

 	stl_check_facets_nearby (C++ function)

 	stl_clear_error (C++ function)

 	stl_close (C++ function)

 	stl_count_facets (C++ function)

 	stl_edge (C++ class)

 	stl_edge::facet_number (C++ member)

 	stl_edge::p1 (C++ member)

 	stl_edge::p2 (C++ member)

 	stl_exit_on_error (C++ function)

 	stl_extra (C++ type)

 	stl_facet (C++ class)

 	stl_facet::extra (C++ member)

 	stl_facet::normal (C++ member)

 	stl_facet::vertex (C++ member)

 	stl_facet_stats (C++ function)

 	stl_file (C++ class)

 	stl_file::edge_start (C++ member)

 	stl_file::error (C++ member)

 	stl_file::facet_start (C++ member)

 	stl_file::fp (C++ member)

 	stl_file::heads (C++ member)

 	stl_file::M (C++ member)

 	stl_file::neighbors_start (C++ member)

 	stl_file::stats (C++ member)

 	stl_file::tail (C++ member)

 	stl_file::v_indices (C++ member)

 	stl_file::v_shared (C++ member)

 	stl_fill_holes (C++ function)

 	stl_fix_normal_directions (C++ function)

 	stl_fix_normal_values (C++ function)

 	stl_generate_shared_vertices (C++ function)

 	stl_get_error (C++ function)

 	stl_get_size (C++ function)

 	stl_hash_edge (C++ class)

 	stl_hash_edge::facet_number (C++ member)

 	stl_hash_edge::key (C++ member)

 	stl_hash_edge::next (C++ member)

 	stl_hash_edge::which_edge (C++ member)

 	stl_initialize (C++ function)

 	stl_invalidate_shared_vertices (C++ function)

 	STL_MAX (C macro)

 	STL_MIN (C macro)

 	STL_MIN_FILE_SIZE (C macro)

 	stl_mirror_xy (C++ function)

 	stl_mirror_xz (C++ function)

 	stl_mirror_yz (C++ function)

 	stl_neighbors (C++ class)

 	stl_neighbors::neighbor (C++ member)

 	stl_neighbors::which_vertex_not (C++ member)

 	stl_normal (C++ class)

 	stl_normal::x (C++ member)

 	stl_normal::y (C++ member)

 	stl_normal::z (C++ member)

 	stl_normalize_vector (C++ function)

 	stl_open (C++ function)

 	stl_open_merge (C++ function)

 	stl_print_edges (C++ function)

 	stl_print_neighbors (C++ function)

 	stl_put_little_float (C++ function)

 	

 	stl_put_little_int (C++ function)

 	stl_read (C++ function)

 	stl_reallocate (C++ function)

 	stl_remove_unconnected_facets (C++ function)

 	stl_repair (C++ function)

 	stl_reverse_all_facets (C++ function)

 	stl_rotate_x (C++ function)

 	stl_rotate_y (C++ function)

 	stl_rotate_z (C++ function)

 	stl_scale (C++ function)

 	stl_scale_versor (C++ function)

 	stl_stats (C++ class)

 	stl_stats::backwards_edges (C++ member)

 	stl_stats::bounding_diameter (C++ member)

 	stl_stats::collisions (C++ member)

 	stl_stats::connected_edges (C++ member)

 	stl_stats::connected_facets_1_edge (C++ member)

 	stl_stats::connected_facets_2_edge (C++ member)

 	stl_stats::connected_facets_3_edge (C++ member)

 	stl_stats::degenerate_facets (C++ member)

 	stl_stats::edges_fixed (C++ member)

 	stl_stats::facets_added (C++ member)

 	stl_stats::facets_malloced (C++ member)

 	stl_stats::facets_removed (C++ member)

 	stl_stats::facets_reversed (C++ member)

 	stl_stats::facets_w_1_bad_edge (C++ member)

 	stl_stats::facets_w_2_bad_edge (C++ member)

 	stl_stats::facets_w_3_bad_edge (C++ member)

 	stl_stats::freed (C++ member)

 	stl_stats::header (C++ member)

 	stl_stats::malloced (C++ member)

 	stl_stats::max (C++ member)

 	stl_stats::min (C++ member)

 	stl_stats::normals_fixed (C++ member)

 	stl_stats::number_of_blocks (C++ member)

 	stl_stats::number_of_facets (C++ member)

 	stl_stats::number_of_parts (C++ member)

 	stl_stats::original_num_facets (C++ member)

 	stl_stats::shared_malloced (C++ member)

 	stl_stats::shared_vertices (C++ member)

 	stl_stats::shortest_edge (C++ member)

 	stl_stats::size (C++ member)

 	stl_stats::type (C++ member)

 	stl_stats::volume (C++ member)

 	stl_stats_out (C++ function)

 	stl_translate (C++ function)

 	stl_translate_relative (C++ function)

 	stl_type (C++ type)

 	stl_verify_neighbors (C++ function)

 	stl_vertex (C++ class)

 	stl_vertex::x (C++ member)

 	stl_vertex::y (C++ member)

 	stl_vertex::z (C++ member)

 	stl_write_ascii (C++ function)

 	stl_write_binary (C++ function)

 	stl_write_binary_block (C++ function)

 	stl_write_dxf (C++ function)

 	stl_write_edge (C++ function)

 	stl_write_facet (C++ function)

 	stl_write_neighbor (C++ function)

 	stl_write_obj (C++ function)

 	stl_write_off (C++ function)

 	stl_write_quad_object (C++ function)

 	stl_write_vertex (C++ function)

 	stl_write_vrml (C++ function)

V

 	

 	v_indices_struct (C++ class)

 	

 	v_indices_struct::vertex (C++ member)

 Copyright 2015, ADMesh contributors.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		ADMesh 0.98.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, ADMesh contributors.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

